Focus Feature 5 Health Inpacts of Inans Dort

he way that societies organise systems of transport and mobility has a decisive impact on public health. For example, transport affects health by contributing to air and noise pollution, by impacting people's physical activity (such as walking and cycling, including walking to public transport) and through road injuries.1 Most of the top 10 causes of death worldwide are directly and strongly linked to risk factors (such as air pollution and physical inactivity) that are influenced by how transport systems are shaped; they include heart attack (#1 cause of death), followed by stroke, pneumonia, chronic respiratory disease, lung cancers and diabetes, as well as road injuries (#10).² Transport can also shape our exposure and susceptibility to infectious agents, such as the viruses causing influenza and COVID-19, and is heavily affected by global pandemics.

Less well known, but equally relevant, are the more beneficial health impacts of transport infrastructure. For example, changes in the design and social interaction of neighbourhoods, including access to public and green space, can result in positive health outcomes, and wellplanned transport systems can offer protection against interpersonal violence, particularly for women and children. Improved mobility for women, children, elderly and the poor, who have less access to private vehicles, enhances health equity.³ Transport also has a decisive influence on more upstream determinants of health and health equity by enabling and facilitating access to education, jobs, health care, recreation and clean water; it also has indirect effects on health through its impacts on natural ecosystems and climate change.⁴

Climate action that alters transport systems can either improve or harm societal health. Global growth in transport demand and emissions, particularly in low- and middle-income countries and cities – coupled with rapid urbanisation, weak transport regulation and enforcement, and poor infrastructure – will further deepen the health and equity impacts of transport systems.⁵ Conversely, climate action can yield large, immediate public health benefits while reducing rising greenhouse gas emissions from the transport sector; this is because many of the pathways to reduce CO₂ emissions are closely linked to policies supporting sustainable mobility and better landuse planning, which are both known to be good for health and equity.⁶

If well planned, implemented and monitored, sustainable transport systems can bring multiple benefits and contribute to many relevant Sustainable Development Goals and related targets. These include Good Health and Well-being (SDG 3), Climate Action (SDG 13), Affordable and Clean Energy (SDG 7), Reduced Inequality (SDG 10) and Sustainable Cities and Communities (SDG 11), as well as the SDG targets directly linked to transport (3.6 and 11.2).

Assessing the health and economic impacts of climate action through transport in an integrated manner is essential. For example, making cities more compact – by increasing land-use density and diversity, and reducing distances to public transport – can result in net health gains for cities, mainly by reducing air pollution and increasing physical activity levels (see Figure 1).⁷ A large share of these benefits will come from more walking, cycling and public transport. For instance, if an average person cycled one trip per day more and drove one trip per day less for 200 days a year, this would not only improve health substantially, but also decrease mobility-related lifecycle CO_2 emissions by around 0.5 tonnes over a year, an important share of average per capita CO_2 emissions from transport.⁸

Transport interventions with the potential to improve climate and public health are wide ranging. They include measures that:

- Avoid motorised passenger trips and freight movement through urban and regional development policies, integrated transport and spatial planning, and travel demand management;
- Shift passenger and freight travel to more environmentally friendly modes, such as walking, cycling and clean public and freight transport; and
- Improve energy efficiency of all transport modes through low-carbon fuel and vehicle technologies.

In the example of Accra, a very progressive policy scenario incorporating avoid, shift and improve measures towards sustainable transport in 2050 could yield a net health gain of nearly 40,000 deaths averted, while reducing CO_2 emissions by nearly 160 million tonnes. Investments in strengthening mobility systems that take into consideration social and environmental determinants of health can also ensure equitable access and reduce disparities.

These are just a few examples of the potential health impacts of transport-related climate action. Advancing progress requires a co-ordinated effort across sectors, including the health, transport and environmental sectors, and across all levels of government, from local to global.

Figure 1. Changes from baseline in transport-related physical activity levels, particulate matter concentrations, and cardiovascular diseases and road injuries, under the Compact City scenario

Note: Smaller health gains were also observed for type-2 diabetes and respiratory diseases (not shown).DALYs = disability-adjusted life-years, a measure commonly used to combine the health impact of different risk factors, such as air pollution and physical inactivity; MET: metabolic equivalent of task, a measure for human energy expenditure. Source: Author elaboration, using estimates from Stevenson et al. (2016).

Annex: Methodological Note

Data usage

Time period for data:

The report strives to utilise the most recent publicly available data and information just prior to the time of publication (as of 31 May 2021). The figures in the report were developed between September and December 2020 using the most recent data available.

Secondary data:

SLOCAT relies on secondary data and information collected and provided by SLOCAT partners and other entities and does not make use of any internal modelling tools.

Data on sustainable mobility: A call to action

The report benefits directly from data collected by a wide range of stakeholders working in different areas of transport.

Data are important for providing a comprehensive picture of the status of sustainable, low carbon transport and are essential for both policy and investment decision making. In these times of change, it is critical to upgrade data and policy collection and interpretation capacities to better understand progress and the hurdles that must be addressed.

The data limitations mentioned below are not new. Obtaining regular, reliable and public data across regions and transport modes remains an outstanding issue. When an increasing number of stakeholders are collecting data and policy information, more and better open-access data and capacity building efforts for data interpretation are supported by many multi-stakeholder partnerships in the sustainable, low carbon movement.

If you share our passion for open-access data and knowledge towards greater impact on policy and investment decision making worldwide and/or would like to contribute data or knowledge to our collective efforts on this report, **please reach out to the research team in the SLOCAT Secretariat at tccgsr@slocatpartnership.org**.

Specific data used in this report

Data on emissions

The data in this edition of the report point to the direct carbon emissions from transport activity; they do not cover the indirect emissions and land-use impacts associated with certain modes of transport. The report primarily utilises CO_2 emission data compiled in the Emissions Database for Global Atmospheric Research (EDGAR) from the Joint Research Centre of the European Commission, as this represents the most recent, comprehensive dataset on transport CO_2 emissions. However, this global dataset does not convey in full detail the unique situations of individual countries. EDGAR provides estimates for fossil CO₂ emissions from all anthropogenic activities with the exception of land use, land-use change, forestry and the large-scale burning of biomass. The main activities covered are CO₂ emissions emitted by the power sector (i.e., power and heat generiton plants), by other industrial combustion (i.e., combustion for industrial manufacturing and fuel production) and by buildings and other activities such as industrial process emissions, agricultural soils and waste. Transport activities covered within EDGAR include road transport, non-road transport, domestic aviation, and inland waterways on a country level, as well as international aviation and shipping.¹

For the world, regions and countries, the CO_2 emission data (provided by EDGAR) span through 2019. In a few places in the report, CO_2 data for 2020 are shown to illustrate the impact of the COVID-19 pandemic; however, these data are based on a different methodology than the EDGAR dataset and should not be compared directly with the data from previous years.

The latest CO_2 emission data for individual transport modes are for 2018 and have been compiled only at the global level. For passenger and freight transport, the data on global CO_2 emissions are for 2017, as this is the latest year with robust data. Data on passenger activity (passenger-kilometres) and freight activity (tonne-kilometres) – provided mainly in the country fact sheets – are based on the latest available year, as indicated in the report analysis.

Information on greenhouse gas emissions – provided in CO_2 equivalent (CO_{2eq}) – include not only CO_2 but also methane, nitrous oxide, and industrial gases such as hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride and nitrogen trifluoride.² These data are less up-to-date. As of 31 May 2021, data on greenhouse gas emissions were not readily available for the period 2019-2020. In some cases, additional data sources were used to provide detailed information about other climate pollutants besides CO_2 .

All data on CO_2 and other greenhouse gas emissions, as well as CO_{2eqr} are provided in metric tonnes.

Data on car ownership

Information on car ownership rates is based on a global dataset from the International Organization of Motor Vehicle Manufacturers (OICA), with the latest release (as of 31 May 2021) dating from 2015.³ Although newer information is available for some individual countries, using these data would hinder accurate global comparisons. Data on passenger and commercial vehicle sales were available only up to 2019.

Policy landscape data

The policy-related information presented in this report is not intended to be comprehensive. The data for the policy landscape indicators provided in Section 3 were gathered through desk research unless otherwise indicated. Barriers to accessing such information include language and limited availability of information through online media (e.g., websites, press releases and news articles).

Data in country fact sheets

Information in the fact sheets is based on desk research and on contributions from the national focal points. The data were collected to the best of the authors' knowledge and based on data availability, and thus may not be complete or show the most recent status. When no information was available for a given indicator, the term "Not available" is used.

Data gaps

Major data gaps exist in areas where there is no globally accepted data collection methodology. For example, the mapping of cycling and walking infrastructure is not currently done in all regions. Also, the modal share can be surveyed through different methods, leading to inconsistencies in available data. In addition, data on paratransit (informal transport), a predominant form of transport in many parts of the world, are largely lacking. This results in an incomplete picture of the impact of transport on climate change and sustainable development.

Methodological approach

Countries and regions

The report follows the M49 Standard of the United Nations Statistics Division.⁴ In total, 196 countries have official United Nations membership and are also party to the United Nations Framework Convention on Climate Change. The available data have been put in a common structure for the United Nations member countries, regions and income groups to enable a consistent assessment. Income groups are based on the World Bank's classification of 2019.⁵

Economic calculations

The per capita and gross domestic product (GDP) calculations are based on the United Nations World Population Prospects 2019 and on World Bank GDP data using constant 2010 USD.⁶

Spatial and temporal scales

The geographic scale (global, national, city-level, etc.) as well as time scale (annual, monthly, daily) used in this report depends largely on the available dataset, as noted in the relevant figures and text. The detailed data forming the basis of the calculations and analysis are provided in the SLOCAT Transport Knowledge Base.⁷

Criteria for selection

The report covers policies, targets, emission reductions (achieved or envisioned) and market measures. To merit inclusion in the analysis, the policies, projects and trends must have been announced or completed between 2018 and 2020. Significant developments from January through May 2021 were included when deemed relevant, with the understanding that the next edition of the *Transport and Climate Change Global Status Report* will cover a period starting in 2021.

Pre- and post-COVID-19 pandemic trends

The year 2020 was pivotal for the world, and the COVID-19 pandemic has had substantial impacts on many of the transport trends monitored in this report. This edition attempts to differentiate between long-term trends and impacts due to the pandemic. To the extent possible, the analysis notes "pre-pandemic" (up to the end of 2019 or latest by February 2020) and "during pandemic" trends (starting in March 2020 until the end of 2020), as in some cases the pandemic led to reversals in long-term trends, at least for a specific period of time. In each section, a box describes the impacts that the pandemic has had on specific regions and sub-sectors.

Assembling the report

Global Strategy Team

This edition of the report was guided by a global strategy team consisting of 20 experts in the field who provided inputs over the span of six meetings between September 2019 and October 2020. Additionally, small group consultations were organised in February 2021, following the peer review process.

Authors and contributors

The report was collaboratively drafted by 22 authors and contributors from 16 organisations, led by the SLOCAT Secretariat. This includes additions and high-level inputs from the copy editor and from the special advisor who also co-authored the Executive Summary. Authors researched and compiled relevant facts and figures for the five sections of the report, including the Focus Features, with supporting review and inputs from several other organisations.

Peer review: A peer review process was carried out from 18 December 2020 to 20 January 2021 with 1,700 comments received from 74 reviewers. Each comment was individually reviewed by the SLOCAT Secretariat and considered in finalising the report.

National focal points: The report benefited from the contributions of voluntary national focal points, or experts from various regions and countries who have been essential to overcome language and information barriers. A public call for participation to provide information on policies and data resulted in several hundred initial registrations. Out of these registrations, 78 national focal points provided inputs through a first survey from 24 January to 3 February 2020; and through a second survey (focused on the country fact sheets) from 6 to 30 August 2020. All national focal points that contributed to the surveys are listed in the Acknowledgements.

Endnotes

Focus Feature 4 | Gender and Sustainable Mobility

- 1 C. Dora et al. (2011), "Urban transport and health," Sustainable Transport: Sourcebook for Policy Makers in Developing Cities, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and World Health Organization (WHO), Eschborn, Germany, p. 60, https://www.who.int/publications/i/item/9789241502443.
- 2 WHO (2019), "Global health estimates: Life expectancy and leading causes of death and disability," The Global Health Observatory, https://www.who.int/data/ gho/data/themes/mortality-and-global-health-estimates (accessed April 9, 2021).
- 3 C. Dora et al., op. cit. note 1, p. 60.
- 4 Ibid., p. 60.
- 5 J. Hosking, P. Mudu and C. Dora (2012), Health in the Green Economy: Health Co-benefits of Climate Change Mitigation – Transport Sector, World Health Organization, Geneva, https://apps.who.int/iris/bitstream/handle/10665/70913/9789241502917_eng.pdf.
- 6 Ibid.; N. Mueller et al. (2015), "Health impact assessment of active transportation: A systematic review," Preventive Medicine, Vol. 76, pp. 103-14, Academic Press Inc., https://doi.org/10.1016/j.ypmed.2015.04.010; M. Stevenson et al. (2016), "Land use, transport, and population health: Estimating the health benefits of compact cities," The Lancet, Urban Design, Transport, and Health Series, Vol. 388/10062, pp. 2925-35, Lancet Publishing Group, https://doi.org/10.1016/S0140-6736(16)30067-8.
- 7 Stevenson et al., op. cit. note 6.
- 8 C. Brand et al. (2021), "The climate change mitigation impacts of active travel: Evidence from a longitudinal panel study in seven European cities," Global Environmental Change, Vol. 67, p. 102224, https://doi.org/10.1016/j.gloenvcha.2021.102224.

Annex: Methodological Note

- M. Crippa et al. (2020), Fossil CO2 Emissions of All World Countries, JRC Science for Policy Report, Publications Office of the European Union, Luxembourg, https:// ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/fossil-co2-emissions-all-world-countries-2020-report.
- 2 US Energy Information Administration (2020), "Energy and the environment explained: Greenhouse gases," https://www.eia.gov/energyexplained/energy-and-the-environment/greenhouse-gases.php (accessed 14 April 2021).
- 3 International Organization of Motor Vehicle Manufacturers (OICA), "Definitions", https://www.oica.net/wp-content/uploads/DEFINITIONS-VEHICLE-IN-USE1.pdf (accessed 20 May 2021).
- 4 United Nations Statistics Division, "Standard country or area codes for statistical use (M49)", https://unstats.un.org/unsd/methodology/m49 (accessed 20 May 2021).
- 5 World Bank (2021), "World Bank Country and Lending Groups", https://datahelp desk.worldbank.org/knowledgebase/articles/906519 (accessed 20 May 2021).
- 6 United Nations (2019), "World Population Prospects 2019", https://population. un.org/wpp (accessed 20 May 2021); World Bank, "GDP (constant 2010 US\$)", http://data.worldbank.org/indicator/NY.GDP.MKTP.KD (accessed 20 May 2021).
- 7 SLOCAT (2021), "Transport Knowledge Base", https://slocat.net/our-work/knowledge-and-research/trakb (accessed 20 May 2021).

Tracking Trends in a Time of Change: The Need for Radical Action Towards Sustainable Transport Decarbonisation

SLOCAT Transport and Climate Change Global Status Report 2nd Edition

This report should be cited as:

SLOCAT (2021), Tracking Trends in a Time of Change: The Need for Radical Action Towards Sustainable Transport Decarbonisation, Transport and Climate Change Global Status Report - 2nd edition, www.tcc-gsr.com.

Data access and licensing:

Attribution 4.0 International (CC BY 4.0) Share — copy and redistribute the material in any medium or format. Adapt — remix, transform and build upon the material for any purpose. Attribution — you must give appropriate credit, provide a link to the licence and indicate if changes were made.

The development of this report was led by Maruxa Cardama, Angel Cortez, Nicolas Cruz, Angela Enriquez, Emily Hosek, Karl Peet, Nikola Medimorec, Arturo Steinvorth and Alice Yiu from the secretariat of the SLOCAT Partnership.

For a full list of acknowledgements, please visit the the online page here.

Explore more online
Download the full report
Download the full endnotes
Contact us

#TransportClimateStatus